Dynamic Long Memory High Frequency Multipower Variation Volatility Evaluations for S&P500

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multipower Variation and Stochastic Volatility

In this brief note we review some of our recent results on the use of high frequency financial data to estimate objects like integrated variance in stochastic volatility models. Interesting issues include multipower variation, jumps and market microstructure effects.

متن کامل

Estimation of Generalized Long-Memory Stochastic Volatility for High-Frequency Data

We consider the generalized long-memory stochastic volatility (GLMSV) model, a relatively general model of stochastic volatility that accounts for persistent (or longmemory) and seasonal (or cyclic) behavior at several frequencies. We employ the decorrelating properties of discrete wavelet packet transform (DWPT) to provide a wavelet-based approximate maximum likelihood estimator that allows fo...

متن کامل

Long Memory in Volatility

How persistent is volatility? In other words, how quickly do financial markets forget large volatility shocks? Figure 1.1, Shephard (attached) shows that daily squared returns on exchange rates and stock indices can have autocorrelations which are significant for many lags. In any stationary ARCH or GARCH model, memory decays exponentially fast. For example, if {εt } are ARCH (1), the {εt} have...

متن کامل

Multipower variation for Brownian semistationary processes

OLE E. BARNDORFF-NIELSEN1, JOSÉ MANUEL CORCUERA2 and MARK PODOLSKIJ3 1Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, DK–8000 Aarhus C, Denmark. E-mail: [email protected] 2Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain. E-mail: [email protected] 3Department of Mathematics, ETH Zürich, HG G32.2, 8092 Zürich, Switzerland. E-mail: mark.p...

متن کامل

Semiparametric estimation of long-memory volatility dependencies: The role of high-frequency data

Recent empirical studies have argued that the temporal dependencies in "nancial market volatility are best characterized by long memory, or fractionally integrated, time series models. Meanwhile, little is known about the properties of the semiparametric inference procedures underlying much of this empirical evidence. The simulations reported in the present paper demonstrate that, in contrast t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Modern Applied Science

سال: 2016

ISSN: 1913-1852,1913-1844

DOI: 10.5539/mas.v10n5p1